Influence of light and neural circuitry on tyrosine hydroxylase phosphorylation in the rat retina.

نویسندگان

  • P Witkovsky
  • R Gabriel
  • J W Haycock
  • E Meller
چکیده

Light has been shown to increase dopamine synthesis and release in vertebrate retinas, but the retinal circuits mediating the light signal are unknown. We utilized three antibodies which recognize phosphorylated forms of tyrosine hydroxylase (TH) at serines 19, 31, and 40 to study the effects of light and neuroactive drugs on TH phosphorylation in the rat retina. Phosphorylated TH and total TH immunoreactivities were co-localized exclusively in retinal neurons whose shape and location are characteristic of dopaminergic interplexiform cells. Phosphorylated TH was weak to absent in darkness, but light strongly stimulated phosphorylation in all the three serine residues. Light-induced phosphorylation of TH induction by light was uniformly blocked by a combination of NMDA and AMPA glutamate receptor antagonists. In darkness, the combination of NMDA+AMPA induced phosphosphorylation of TH at serines 19 and 40 but it was weak at serine 31. A GABA(A) antagonist had the same effect. An agonist of depolarizing (ON) bipolar cells, L-(+)-2-amino-4-phosphonobutyric acid, did not prevent light-induced phosphorylated TH formation. Carbachol, a non-specific cholinergic agonist, selectively induced phosphorylation of TH at serine 31 in darkness, an effect which was blocked by the nicotinic antagonist, d-tubocurarine. These results show that retinal circuits involving glutamatergic, GABAergic and cholinergic synapses influence phospho-TH formation at different serine residues in this enzyme. Gamma amino butyric acid (GABA) and glutamate influence TH phosphorylation at serines 19 and 40, whereas cholinergic inputs affect its phosphorylation at serine 31.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural circuitry and light responses of the dopamine amacrine cell of the turtle retina.

PURPOSE To understand the circuitry and electrophysiology of the dopamine cells in the turtle retina. METHODS Preembedding immunocytochemistry for tyrosine hydroxylase (Toh) was done on vibratome sections of turtle retina. Resultant Toh-immunoreactive (Toh-IR) amacrine cells were then serially thin-sectioned for analysis by electron microscopy (EM). Some sections of Toh-IR cells also were pos...

متن کامل

In Vitro Differentiation of Neural Stem Cells into Noradrenergic-Like Cells

Neural stem cells (NSCs) as a heterogeneous multipotent and self- renewal population are found in different areas in the developing mammalian nervous system, as well as the sub-ventricular zone (SVZ) and the hippocampus of the adult brain. NSCs can give rise to neurons, astrocytes and oligodendrocytes. The aim of this study was to differentiate neural stem cells into noradrenergic–like cells in...

متن کامل

Activity-dependent phosphorylation of tyrosine hydroxylase in dopaminergic neurons of the rat retina.

We studied in vivo activity-dependent phosphorylation of tyrosine hydroxylase (TH) in dopaminergic (DA) neurons of the rat retina. TH phosphorylation (TH-P) was evaluated by immunocytochemistry, using antibodies specific for each of three regulated phosphorylation sites. TH synthesis rate was measured by dihydroxyphenylalanine (DOPA) accumulation in the presence of NSD-1015, an inhibitor of aro...

متن کامل

Assessment of Saffron Neuroprotective Properties in Rat Retina versus Light Damage

Background and objectives: Crocus sativus L. (Iridaceae) commonly known as saffron, is a popular spice which is used for its pleasant aroma and favored color. Regarding the previous reports about the neuroprotective be...

متن کامل

Comparison of Rat Primary Midbrain Neurons Cultured in DMEM/F12 and Neurobasal Mediums

Introduction: Midbrain dopaminergic neurons are involved in various brain functions, including motor behavior, reinforcement, motivation, learning, and cognition. Primary dopaminergic neurons and also several lines of these cells are extensively used in cell culture studies. Primary dopaminergic neurons prepared from rodents have been cultured in both DMEM/F12 and neurobasal mediums in several ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of chemical neuroanatomy

دوره 19 2  شماره 

صفحات  -

تاریخ انتشار 2000